Image Segmentation in Medical Imaging via Graph-cuts
نویسندگان
چکیده
Living donor transplantation and other modern methods of liver treatment are usually based on computed tomography (CT). Our work is motivated by two following clinical application. First is living-related liver transplantation (LRLT). It is the case when healthy voluntary donor gives a part of his liver to treated person. Second are oncologic resections. It is treatment for patient with liver cancer.
منابع مشابه
Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملRegion Merging Via Graph-Cuts
In this paper, we discuss the use of graph-cuts to merge the regions of the watershed transform optimally. Watershed is a simple, intuitive and efficient way of segmenting an image. Unfortunately it presents a few limitations such as over-segmentation and poor detection of low boundaries. Our segmentation process merges regions of the watershed over-segmentation by minimizing a specific criteri...
متن کاملDT-MRI Segmentation Using Graph Cuts
An important problem in medical image analysis is the segmentation of anatomical regions of interest. Once regions of interest are segmented, one can extract shape, appearance, and structural features that can be analyzed for disease diagnosis or treatment evaluation. Diffusion tensor magnetic resonance imaging (DT-MRI) is a relatively new medical imaging modality that captures unique water dif...
متن کاملMedical image segmentation via min s-t cuts with side constraints
Graph cut algorithms (i.e., min s-t cuts) [3][10][15] are useful in many computer vision applications. In this paper we develop a formulation that allows the addition of side constraints to the min s-t cuts algorithm in order to improve its performance. We apply this formulation to foreground/background segmentation and provide empirical evidence to support its usefulness. From our experiments ...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014